Manuel Bogoya 

Projects

4. M. Bogoya, J. Cifuentes, L. Estupiñan, and A. Varela.
Elevation and climate conditions related to affectation syndrome of two species of frailejon (Asteraceae) in Colombia.
Work in progress 60%.

3. M. Bogoya and S.M. Grudsky.
Asymptotic eigenvalue description for a family of Hermitian Toeplitz matrices with a generating function having a power singularity.
Work in progress 70%.

2. M. Bogoya, J. Gasca, and S.M. Grudsky.
Fast eigenvalue computations for non-Hermitian tetradiagonal Toeplitz matrices.
Work in progress 90%.

1. M. Bogoya and S.M. Grudsky.

Eigenvalues of Hermitian Toeplitz matrices with a matrix order dependent symbol.

Work in progress 90%.

Papers

32. M. Bogoya, S.M. Grudsky, and S. Serra-Capizzano.
Eigenvalue superposition for Toeplitz matrix-sequences with matrix order dependent symbols.
Linear Algebra and its Applications (Linear Algebra Appl.) (2024).

DOI10.1016/j.laa.2024.04.019


31. M. Bogoya, S.M. Grudsky, and S. Serra-Capizzano.
Fast non-Hermitian Toeplitz eigenvalue computations, joining matrix-less algorithms and FDE approximation matrices.
SIAM Journal on Matrix Analysis with Applications (SIAM J. Matrix Analysis Appl. or SIMAX) 45[1] (2024), 284--305.

DOI:10.1137/22M1529920


30. M. Bogoya, S.E. Ekström, S. Serra-Capizzano, and P. Vassalos.
Matrix-less methods for the spectral approximation of large non-Hermitian Toeplitz matrices: a concise theoretical analysis and a numerical study.
Numerical Linear Algebra with Applications (Numer. Linear Algebra Appl.) 31[4] (2024), e2545.

DOI:10.1002/nla.2545


29. M. Bogoya, S. Serra-Capizzano, and P. Vassalos.
Fast Toeplitz eigenvalue computations joining interpolation-extrapolation matrix-less algorithms and simple-loop theory: The preconditioned setting.
Applied Mathematics and Computation (Appl. Math. Compt.) 466 (2024), 128483.

DOI:10.1016/j.amc.2023.128483


28. M. Bogoya, J. Gasca, and S.M. Grudsky.
Eigenvalue asymptotic expansion for non-Hermitian tetradiagonal Toeplitz matrices with real spectrum.
Journal of Mathematical Analysis and Applications (J. Math. Anal. Appl.) 531[1,2] (2024), 127816.

DOI:10.1016/j.jmaa.2023.127816

27. M. Bogoya, A. Böttcher, and S.M. Grudsky.
Asymptotic eigenvalue expansions for Toeplitz matrices with certain Fisher–Hartwig symbols.
Journal of Mathematical Sciences (J. Math. Sci.) 271[2] (2023), 176--196.

DOI:10.1007/s10958-023-06362-9

26. M. Bogoya and S.M. Grudsky.

Asymptotics for the eigenvalues of Toeplitz matrices with a symbol having a power singularity.

Numerical Linear Algebra with Applications (Numer. Linear Algebra Appl.), 30[5] (2023), e2496.

DOI:10.1002/nla.2496


25. M. Bogoya, S.M. Grudsky, M. Mazza, and S. Serra-Capizzano.

On the extreme eigenvalues and asymptotic conditioning of a class of Toeplitz matrix-sequences arising from fractional problems.

Linear & Multilinear Algebra (Linear Multilinear A.) 71[15] (2023), 2462--2473.

DOI:10.1080/03081087.2022.2105784


24. M. Bogoya, S.E. Ekström, and S. Serra-Capizzano.

Fast Toeplitz eigenvalue computations, joining interpolation-extrapolation matrix-less algorithms and simple-loop theory.

Numerical Algorithms (Numer. Algor.), 91[4] (2022), 1653--1676.

DOI:10.1007/s11075-022-01318-7


23. M. Bogoya, S.M. Grudsky, S. Serra-Capizzano, C. Tablino-Possio.

Fine spectral estimates with applications to the optimally fast solution of large FDE linear systems.

BIT Numerical Mathematics (BIT), 62[4] (2022), 1417--1431.

DOI:10.1007/s10543-022-00916-0


22. M. Bogoya, S. Serra-Capizzano, and K. Trotti.

Upper Hessenberg and Toeplitz Bohemian matrix-sequences: A note on their asymptotical eigenvalues and singular values.

Electronic Transactions on Numerical Analysis (Electron. T. Numer. Ana.), 55 (2022), 76–91. 

DOI:10.1553/etna_vol55s76


21. L.D. Gómez, L.C. Jiménez, A. Pérez, R.A. Poutou, A. Pedroza, J. Salcedo, A. Vargas, and M. Bogoya.

LDPE transformation by exposure to sequential low-pressure plasma and TiO2/UV photocatalysis.

Molecules, 26[9] (2021), 2513.

DOI:10.3390/molecules26092513


20. A. Varela, A. Sandoval, M. Muñoz, A. Gómez, and M. Bogoya.

Evaluation of green roof structures and substrates for Lactuca sativa L. in tropical conditions.

Urban Forestry & Urban Greening (Urban For. Urban Gree.) 60 (2021), 127063.

DOI:10.1016/j.ufug.2021.127063


19. L. Uribe, M. Bogoya, A. Vargas, A. Lara, G. Rudolph, and O. Schütze.

A set based Newton method for the averaged Hausdorff distance for multi-objective reference set problems.

Mathematics, 8[10] (2020), 1822.

DOI:10.3390/math8101822


18. M. Bogoya, A. Vargas, and O. Schütze.

The averaged Hausdorff distances in multi-objective optimization: A review.

Mathematics, 7[10] (2019), 894.

DOI:10.3390/math7100894


17. M. Bogoya, S.M. Grudsky, and I.S. Malysheva.

Extreme individual eigenvalues for a class of large Hessenberg Toeplitz matrices.

Operator Theory: Advances and Applications (Oper. Theory: Adv. Appl.), 271 (2018), 119–143.

DOI:10.1007/978-3-030-04269-1_4


16. M. Bogoya, A. Vargas, O. Cuate, and O. Schütze.

A (p,q)-averaged Hausdorff distance for arbitrary measurable sets.

Mathematical & Computational Applications (Math. Comput. Appl.), 23[3] (2018), 51. 

DOI:10.3390/mca23030051


15. L.D. Gómez, D.A. Moreno, R.A. Poutou, J.C. Salcedo, A.M. Pedroza, A. Vargas, and M. Bogoya.

Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus.

Plos One, 13[9] (2018), e0203786.

DOI:10.1371/journal.pone.0203786


14. M. Bogoya and A. Vargas.

A generalization of the averaged Hausdorff distance.

Computación y Sistemas (Comput. y Sist.), 22[2] (2018), 331–345.

DOI:10.15446/10.13053/CyS-22-2-2950


13. M. Bogoya, J.D. Bogoya, and A.J. Peñuela.

Value-added in higher education: ordinary least squares and quantile regression for a Colombian case.

Ingeniería & Investigación (Ing. Invest.), 37[3] (2017), 30–36. 

DOI:10.15446/ing.investig.v37n3.61729


12. A. Böttcher, M. Bogoya, S.M. Grudsky, and E.A. Maximenko.

Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices.

Sbornik Mathematics (Sb. Math.), 208[11] (2017), 1578–1601.

DOI:10.1070/SM8865


11. M. Bogoya, S.M. Grudsky, and E.A. Maximenko.

Eigenvalues of Hermitian Toeplitz matrices generated by simple-loop symbols with relaxed smoothness.

Operator Theory: Advances and Applications (Oper. Theory: Adv. Appl.), 259 (2017), 179–212.

DOI:10.1007/978-3-319-49182-0_11


10. M. Bogoya, A. Böttcher, and E.A. Maximenko.

From convergence in distribution to uniform convergence.

Boletín de la Sociedad Matemática Mexicana (Bol. Soc. Mat. Mex.), 22[2] (2016), 695–710.

DOI:10.1007/s40590-016-0105-y


9. M. Bogoya, A. Böttcher, S.M. Grudsky, and E.A. Maximenko.

Eigenvectors of Hermitian Toeplitz matrices with smooth simple-loop symbols.

Linear Algebra and its Applications (Linear Algebra Appl.), 493 (2016), 606–637.

DOI:10.1016/j.laa.2015.12.017


8. M. Bogoya, A. Böttcher, S.M. Grudsky, and E.A. Maximenko.

Maximum norm versions of the Szegő and Avram–Parter theorems for Toeplitz matrices.

Journal of Approximation Theory (J. Approx. Theory), 196 (2015), 79–100.

DOI:10.1016/j.jat.2015.03.003


7. M. Bogoya, A. Böttcher, S.M. Grudsky, and E.A. Maximenko.

Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols.

Journal of Mathematical Analysis and Applications (J. Math. Anal. Appl.), 422[2] (2015), 1308–1334.

DOI:10.1016/j.jmaa.2014.09.057


6. M. Bogoya, J.D. Bogoya.

An academic value-added mathematical model for higher education in Colombia.

Ingeniería & Investigación (Ing. Invest.), 33[2] (2013), 63–68.

DOI:10.15446/ing.investig


5. M. Bogoya, A. Böttcher, and A. Poznyak.

Eigenvalues of Hermitian Toeplitz matrices with polynomially increasing entries.

Journal of Spectral Theory (J. Spectr. Theory), 2[3] (2012), 267–292.

DOI:10.4171/JST/29


4. M. Bogoya, A. Böttcher, S.M. Grudsky, and E.A. Maksimenko.

Eigenvectors of Hessenberg Toeplitz matrices and a problem by Dai, Geary, and Kadanoff.

Linear Algebra and its Applications (Linear Algebra Appl.), 436[9] (2012), 3480–3492.

DOI:10.1016/j.laa.2011.12.012


3. M. Bogoya, A. Böttcher, and S.M. Grudsky.

Asymptotics of individual eigenvalues of a class of large Hessenberg Toeplitz matrices.

Operator Theory: Advances and Applications (Oper. Theory: Adv. Appl.), 220 (2012), 77–96.

DOI:10.1007/978-3-0348-0346-5_5


2. M. Bogoya, A. Böttcher, S.M. Grudsky, and E.A. Maksimenko.

Eigenvalues of Hessenberg Toeplitz matrices generated by symbols with several singularities.

Communications in Mathematical Analysis (Commun. Math. Anal.), 3 (2010), 23–41.

http://www.math-res-pub.org/cma/proceedings/3


1. M. Bogoya and C. Montenegro.

A weak form of choice for the standard binary tree.

Revista Colombiana de Matemáticas (Rev. Colomb. de Mat.), 40[2] (2006), 111–117.

http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262006000200005

Research summary

The figure shows the number of published papers per year (left) and per research area (right).

My research areas are:

Main colaborators

My Erdös number is 3 by the chain:

A. Böttcher - P. Diaconis - P. Erdös

Education


Teaching

Undergraduate Teaching

1999–2006. Universidad de los Andes (15 courses)

2011–2020. Pontificia Universidad Javeriana (45 courses)

2022–today. Universidad del Valle (9 courses)

Graduate Teaching

2019–2020. Pontificia Universidad Javeriana (3 courses)

Work Experience